Industry Concentration, Sticky Profits, and Return Dynamics

S. Yanki Kalfa Rady School of Management - UCSD

March 20, 2025

1

Industry Concentration is Rising

Industry concentration is increasing for almost all industries

Highly Concentrated Industries Offer High Returns

Portfolio of concentrated industries earn 3.5%/year more than competitive industries

Literature

Increasing Concentration:

• Liu et. al. (2022) & Akcigit and Ates (2023): Low interest rates and low knowledge diffusion increases concentration and increases profit growth.

What are some implications?:

- Barkai (2019) & Corhay et.al. (2020): Increased and sustained profits for concentrated industries, and high markups.
- Grullon et. al. (2019): Positive correlation between returns and industry concentration.

Findings / Contribution

Findings:

- Expected profit growth persistence is larger in concentrated industries
- Dual Effect:
 - Higher sensitivity of profits to economic cycles
 - Higher Cash Flow News contribution in returns
- Implications:
 - Higher risk premium
 - Higher sensitivity of expected returns and conditional volatility to economic downturns

Take Home Message:

• Firms in concentrated industries offer higher risk premium but face higher volatility during economic downturns UC San Diego

Present Value Model with Profits

Log-Linear PV Relationship with Profits:

$$(p_{j,t+1} - \pi_{j,t+1}) \approx \frac{\kappa_j}{1 - \rho_{1,j}} + \sum_{h=0}^{\infty} \rho_{1,j}^h (\Delta \pi_{j,t+1+h} - r_{j,t+1+h})$$

Where:

- $p_{j,t+1}$: log price of industry j at time t+1
- $\pi_{j,t+1}$: log profits of industry j at time t+1
- $\Delta \pi_{j,t+1}$: profit growth of industry j at time t+1
- $r_{j,t+1}$: returns of industry j at time t+1

Data and Latent Variables

Data:

- Quarterly 1976Q2 2021Q2
- Fama-French 30 Industry excluding Finance and Insurance
- Value Weighted Prices
- Value Weighted Gross Profits: Revenue_t COGS_t
 Why Latent Variables?
- Vast majority of papers use VARs
- Model observables: Market returns and dividends
- We are interested in **expectations** at the industry level
- van Binsbergen and Koijen (2010) is a special case

Assumptions

Industry Level:

- Expected Returns: $\mu_{j,t} \equiv \mathbb{E}_t[r_{j,t+1}]$
- Expected Profit Growth: $g_{j,t} \equiv \mathbb{E}_t[\Delta \pi_{j,t+1}]$ Systematic:
- Discount Rates: $\tilde{F}_{i,t}^{DR}$
- Cash Flows: $\tilde{F}_{j,t}^{CF}$

$$\tilde{\mu}_{j,t+1} = (\mu_{j,t+1} - \delta_{0,j}) = \delta_{1,j}\tilde{\mu}_{j,t} + \delta_{2,j}\tilde{F}_{t+1}^{DR} + \varepsilon_{j,t+1}^{\mu}$$
$$\tilde{g}_{j,t+1} = (g_{j,t+1} - \omega_{0,j}) = \omega_{1,j}\tilde{g}_{j,t} + \omega_{2,j}\tilde{F}_{t+1}^{CF} + \varepsilon_{j,t+1}^{g}$$
$$\tilde{F}_{t+1}^{DR} = (F_{t+1}^{DR} - \gamma_0) = \gamma_1\tilde{F}_t^{DR} + \varepsilon_{t+1}^{F^{DR}}$$
$$\tilde{F}_{t+1}^{CF} = (F_{t+1}^{CF} - \phi_0) = \phi_1\tilde{F}_t^{CF} + \varepsilon_{t+1}^{F^{CF}},$$

Assumptions- Covariance Matrix

Extension of van Binsbergen and Koijen (2010):

_ .

$$\Sigma_{j} \equiv \mathsf{var} \left(\begin{bmatrix} \varepsilon_{j,t+1}^{\tilde{\mu}} \\ \varepsilon_{j,t+1}^{\tilde{\mu}} \\ \varepsilon_{j,t+1}^{\tilde{\mu}} \\ \varepsilon_{t+1}^{FOR} \\ \varepsilon_{t+1}^{FCF} \\ \varepsilon_{t+1}^{FCF} \end{bmatrix} \right) = \begin{bmatrix} \sigma_{j,\mu}^{2} & \sigma_{j,\mu g} & 0 & 0 & 0 \\ \sigma_{j,\mu g} & \sigma_{j,g}^{2} & 0 & 0 & 0 \\ 0 & 0 & \sigma_{j,\Delta\pi}^{2} & 0 & 0 \\ 0 & 0 & 0 & \sigma_{FDR}^{2} & \sigma_{FDRFCF} \\ 0 & 0 & 0 & \sigma_{FDRFCF} & \sigma_{FCF}^{2} \end{bmatrix}$$

PV Model Cont'd

Taking expectations of the PV relationship results in:

$$pe_{j,t} = \mathcal{A}_j + \mathcal{B}_{1,j} \tilde{g}_{j,t} - \mathcal{B}_{3,j} \tilde{\mu}_{j,t},$$
 where:

$$egin{aligned} \mathcal{A}_{j} &= rac{\kappa_{j} + \omega_{0,j} - \delta_{0,j}}{1 -
ho_{1,j}} \ \mathcal{B}_{1,j} &= rac{1}{1 -
ho_{1,j}\omega_{1,j}} \ \mathcal{B}_{3,j} &= rac{1}{1 -
ho_{1,j}\delta_{1,j}} \end{aligned}$$

Dynamic Factor Model

2J Observation Equations:

$$pe_{j,t+1} = (1 - \delta_{1,j})\mathcal{A}_j + \delta_{1,j}pe_{j,t} - (\delta_{1,j} - \omega_{1,j})\mathcal{B}_{1,j}\tilde{g}_{j,t} + \mathcal{B}_{1,j}\omega_{2,j}\tilde{F}_{t+1}^{CF} - \mathcal{B}_{3,j}\delta_{2,j}\tilde{F}_{t+1}^{DR} + \mathcal{B}_{1,j}\varepsilon_{j,t+1}^{\tilde{g}} - \mathcal{B}_{3,j}\varepsilon_{j,t+1}^{\tilde{\mu}} \Delta \pi_{j,t+1} = \omega_{0,j} + \tilde{g}_{j,t} + \varepsilon_{j,t+1}^{\Delta \pi} \frac{J+2 \text{ State Equations:}}{\tilde{g}_{j,t+1} = \omega_{1,j}\tilde{g}_{j,t} + \omega_{2,j}\tilde{F}_{t+1}^{CF} + \varepsilon_{j,t+1}^{\tilde{g}} \tilde{F}_{t+1}^{DR} = \gamma_1 \tilde{F}_t^{DR} + \varepsilon_{t+1}^{F^{DR}} \\\tilde{F}_{t+1}^{CF} = \phi_1 \tilde{F}_t^{CF} + \varepsilon_{t+1}^{F^{CF}} \\ \tilde{F}_{t+1}^{CF} = \phi_1 \tilde{F}_t^{CF} + \varepsilon_{t+1}^{F^{CF}} \end{aligned}$$

Parameter Estimates

Expected profit growth persistence shows more variability in the cross section

Persistence is Larger in Concentrated Industries

Positive correlation between expected profit growth persistence $(\omega_{1,j})$ and HHI

Concentrated Industries Have Rigid Products

MR Test: Increasing monotonic relationship between product rigidity and concentration

• High Profit Growth Persistence Leads to Cyclically Sensitive Profits

Eqn.	$\Delta \pi_{j,t} = \alpha + \beta D_t^{\text{Reces.}} + \varepsilon_{j,t}$						
Quintiles	eta	SE	P-Value				
Q1	-1.96	1.03	0.06				
Q3	-2.12	1.49	0.16				
Q5	-4.01	1.58	0.01				

What Does AP Theory Say?

- Concentrated Industries Offer Higher Risk Premium
- Production-Based AP Model (Liu et. al. (2009)):
- \bullet \uparrow Correlation between SDF and Profits \rightarrow Risk Premium \uparrow
 - Define profits: $\Pi(K_{i,t}, X_{i,t})$ with:
 - Aggregate Shocks: $X_{i,t}$; Capital $K_{i,t}$
 - Payout: $CP_{i,t} = \Pi(K_{i,t}, X_{i,t}) \Phi(K_{i,t}, I_{i,t})$

$$V_{i,t} = \max_{K_{i,t}, l_{i,t}} \mathbb{E}_t \left[\sum_{s=0}^{\infty} M_{t+s} C P_{i,t+s} \right]$$

What Does DFM Say?

- High profit growth persistence leads to higher loading on systematic cash flows
- $\uparrow \omega_{1,j} \Rightarrow \uparrow \frac{\mathcal{B}_{1,j}}{\mathcal{B}_{3,j}}$ $\downarrow \tilde{F}_{t|t}^{CF} \Rightarrow \mathbb{E}_t[r_{j,t+1}] \uparrow$
- Expected returns of concentrated industries increase more than competitive industries

$$\begin{split} \mathbb{E}_{t}[r_{j,t+1}] &= \mathcal{B}_{3,j}^{-1} \left[\frac{\mathbb{E}_{t}[\boldsymbol{p}\boldsymbol{e}_{j,t+1}]}{\delta_{1,j}} - \left(\frac{1+\delta_{1,j}}{\delta_{1,j}} \right) \mathcal{A}_{j} \right] + \frac{\delta_{2,j}\gamma_{1}}{\delta_{1,j}} \tilde{F}_{t|t}^{DR} \\ &- \frac{\mathcal{B}_{1,j}}{\mathcal{B}_{3,j}} \left[\frac{\omega_{2,j}\phi_{1}}{\delta_{1,j}} \tilde{F}_{t|t}^{CF} + \left(1 - \frac{\delta_{1,j} - \omega_{1,j}}{\delta_{1,j}} \right) \tilde{g}_{j,t|t} \right] \end{split}$$

Bad Beta, Good Beta

- High persistence leads to high loading on Cash Flow News
- Concentrated industries offer higher risk premium

•
$$\uparrow \omega_{1,j} \Rightarrow \uparrow \mathcal{B}_{1,j} \Rightarrow \uparrow (\mathbf{r}_{j,t+1} - \mathbb{E}_t[\mathbf{r}_{j,t+1}])$$

$$r_{j,t+1} - \mathbb{E}_{t}[r_{j,t+1}] = \underbrace{\rho_{1,j}\mathcal{B}_{1,j}\left(\varepsilon_{j,t+1}^{g} + \omega_{2,j}\varepsilon_{t+1}^{F^{CF}}\right)}_{Cash \ Flow \ News} - \underbrace{\rho_{1,j}\mathcal{B}_{3,j}\left(\varepsilon_{j,t+1}^{\mu} + \delta_{2,j}\varepsilon_{t+1}^{F^{DR}}\right)}_{Discount \ Rate \ News}$$

High Persistence Leads to High CFN Contribution

- Return Movements of Concentrated Industries are more susceptible to CF Shocks
- Leads to Cyclical Returns in Concentrated Industries
- $\uparrow \omega_{1,j} \Rightarrow \downarrow (\delta_{1,j} \omega_{1,j}) \Rightarrow \uparrow \mathsf{CFN}$ Share

Cash Flow News Share:

$$Var(CFN_j)/Var(r_{j_t+1} - \mathbb{E}_t[r_{j,t+1}]) \propto \left[1 - \frac{\rho_{1,j}(\delta_{1,j} - \omega_{1,j})}{1 - \rho_{1,j}\omega_{1,j}}\right]^{-1}$$

Variance Decomposition: High vs Low Concentration

High Concentration Means Higher Volatility

Because of cyclical profits, high CFN Share means high volatility during downturns
Need to model conditional volatility:

$$r_{j,t+1} - \mathbb{E}_{t}[r_{j,t+1}] = \underbrace{\rho_{1,j}\mathcal{B}_{1,j}\left(\varepsilon_{j,t+1}^{g} + \omega_{2,j}\varepsilon_{t+1}^{F^{CF}}\right)}_{Cash \ Flow \ News} - \underbrace{\rho_{1,j}\mathcal{B}_{3,j}\left(\varepsilon_{j,t+1}^{\mu} + \delta_{2,j}\varepsilon_{t+1}^{F^{DR}}\right)}_{Discount \ Rate \ News}$$

- Time variation in volatility must come from TV in CFN, DRN or both
- Jointly Model CFN and DRN using MGARCH(1,1)
- Compute return volatility

DCC-GARCH(1,1)

MGARCH allows for the estimation of:

- Industry Specific and Systematic Components
- IV coming from Cash Flows and Discount Rate News

$$\begin{split} \boldsymbol{\Gamma}_{j,t+1} - \mathbb{E}_{t}[\boldsymbol{r}_{j,t+1}] &= \sigma_{j,t+1}^{r} \epsilon_{j,t+1}^{r} \mid \epsilon_{j,t+1}^{r} \sim \mathcal{N}(0,1) \ i.i.d. \\ \sigma_{j,t+1}^{r} &= (\gamma_{j,CF} \sigma_{j,t+1}^{g} + \gamma_{j,CF} \omega_{2,j} \sigma_{t+1}^{F^{(2)}} - \gamma_{j,DR} \sigma_{j,t+1}^{\mu} - \gamma_{j,DR} \delta_{2,j} \sigma_{t+1}^{F^{(1)}}) \\ \boldsymbol{\Sigma}_{j,t+1} &= \begin{bmatrix} \mathcal{J}_{j,t+1} & \boldsymbol{0} \\ \boldsymbol{0} & \mathcal{L}_{j} \mathcal{S}_{t+1} \mathcal{L}_{j} \end{bmatrix} \end{split}$$

I

Conditional Volatility

UC San Diego

Sys-CFN

Idio-CFN

Covariance

Higher Volatility and Lower Sharpe Ratios in Recessions

Eqn.	$Vol_{j,t} = \alpha_j + \beta D_t^{\mathit{Reces.}} + \varepsilon_{j,t}$			$SR_{j,t} = \alpha_j + \beta D_t^{\textit{Reces.}} + \varepsilon_{j,t}$			
Quintiles	eta	SE	P-Value	$ \beta$	SE	P-Value	
Q1	0.14	0.08	0.09	-0.02	0.01	0.22	
Q3	0.20	0.07	0.00	-0.01	0.02	0.56	
Q5	0.28	0.05	0.00	-0.09	0.04	0.02	

Conclusion

- Concentrated industries have:
 - Rigid products
 - Highly persistent profit growth
 - Cyclical profits
- This leads to:
 - Higher Risk Premium
 - Higher Contribution of CFN to returns and volatility
- During Recessions:
 - Higher Expected Returns
 - Higher Conditional Volatility
 - Lower Sharpe Ratios

